
IGOR:
The Intelligence Guard for ONI Replication

R.W. Shore

The ISX Corporation
2000 North 15th Street, Suite 1000

Arlington, VA 22201
703/558-7800 (V), 703/558-7895 (F)

bshore@isx.com

Abstract: The Intelligence Guard for ONI Replication (IGOR) is a dual-host guard processor that allows database
replication to occur across a security barrier with no person in the loop. IGOR works by accepting and validating
SQL statements passed to it from a Sybase Replication Server (a product of Sybase, Inc.). A validated SQL
statement flows across a serial line to the “other side” of the security barrier, where it is applied to the replicate
database. IGOR’s configuration files describe the SQL statements that are allowed to flow across the security barrier,
including value checks that must be applied to validate the statements. Each of the two hosts associated with an
IGOR installation is dedicated to processing SQL statements; only a limited number of UNIX users with well-
defined roles are allowed to login to an IGOR host. IGOR has been accredited for a specific high-to-low installation.
With different configuration files the same code can be used for other high-to-low situations, and with minor
additions to the code IGOR would be appropriate for low-to-high situations as well.

This work was funded by the Office of Naval Intelligence, National Maritime Intelligence Center, 4251 Suitland
Road, Washington DC 20395-5020. The Government point of contact is Mr. Al Poulin, 301/669-4000.

 1. Introduction

One problem facing the Office of Naval Intelligence
(ONI) is the dissemination of its analytical databases
to customers at various security levels, in a timely
and secure fashion. In the commercial world the
technology of database replication is becoming one
mechanism for keeping two (or more) copies of the
same database synchronized automatically. Before this
technology could be applied to ONI’s problems,
however, we had to develop a security guard that
would allow the automated replication process to
occur in a secure and controlled fashion.

This paper describes IGOR, the result of a nine-month
effort by ONI to take advantage of the commercial
replication software without compromising the
security of ONI databases. The paper briefly discusses
IGOR’s operation and security features.

 1. 1. Glossary

GP
Guard Processor. A role an IGOR host may
play. The other role is the RSP.

IGOR
The Intelligence Guard for ONI Replication. A
GOTS product that allows a replication server to
operate across a security barrier. Each IGOR
installation consists of two hosts connected via a
serial cable.

LTM
Log Transfer Manager. Software that transfers
changes from a master database into a Sybase
replication server.

ONI
The Office of Naval Intelligence, located in the
National Maritime Intelligence Center (NMIC)
in Suitland MD.

Replication Server
A COTS product from Sybase that synchronizes
a replicate database with a master by passing
changes from the master to the replicate..

RSP
Replicate-Side Processor. A role an IGOR host
may play. The other role is the GP.

SQL
Structured Query Language. A near-standard
syntax for expressing database changes.

 1. 2. Summary of IGOR’s Operation

A replication server sends an SQL statement through
a TCP/IP-based network to the host fulfilling the GP
role. The GP verifies that the contents of the
statement are in accordance with the security policy;
specifically, the GP verifies that the statement
mentions only the expected database, tables, and
columns and that columns pass any value constraints
given in the security policy. If the statement passes
the checks, the GP passes the statement across a serial
line to a second host fulfilling the RSP role. The

RSP applies the statement to the target database via a
second TCP/IP network and the appropriate, DBMS-
specific protocol. The RSP returns a pass/fail status
back through the serial line to the GP, which passes
the status to the replication server.

IGOR’s initial accreditation involved a high-to-low
transfer, with the GP connected to an SCI network
and the RSP connected to a non-US SECRET-level
network; this is the mode discussed in the bulk of this
paper. With relatively minor additional protections on
the RSP side, IGOR appears accreditable for low-to-
high operation. It is technically possible for each of a
pair of IGOR hosts to fulfill both the GP and RSP
roles, although there are no current plans to accredit
IGOR in this mode.

Master
Database Log Transfer

Manager
Replication

Server IGOR

Replicate
Database

More Restrictive Security
"High Side"

Less Restrictive Security
"Low Side"

Exhibit 1 Basic IGOR Architecture

High Side Physical Control Low Side Physical
Control

Serial
Line

IGOR

GP RSP

High Side
Net

Low Side
Net

Exhibit 2 IGOR Hosts

 2. IGOR’s Operation

Exhibit 1 indicates the overall environment within
which IGOR is to work. The following entities
appear in Exhibit 1:

• Master Database : The source of changes are
tables in a designated “master” database which
may be managed by either Oracle or Sybase.
Each change to a replicated table flows to a …

• Log Transfer Manager (LTM): An LTM is an
intermediary responsible for passing changes
from a master database to a …

• Replication Server : Within the replication
server, changes to the master are queued and
eventually distributed to one (or more) replicates.
Exhibit 1 shows only one of an indefinite
number of replicates, not all of which must
involve IGOR. In the depicted situation the
replication server passes each change to …

• IGOR : IGOR verifies that the change being
passed from the replication server is appropriate
for this specific replicate. If the change is proper,
IGOR simply applies it to the …

• Replicate Database : This database contains a
copy (perhaps a subset) of the master. The
replicate can be managed by either Oracle or
Sybase; the replicate’s DBMS need not be the
same as the master’s.

The result of this process is that changes made to the
master are also made to the replicate, in near real time
and without a person in the loop.

Exhibit 2 shows a slightly expanded version of the
IGOR instance appearing in Exhibit 1. As depicted in
Exhibit 2, IGOR consists of two processors connected
via a serial cable. The GP is connected to the same
network as the master database; the RSP is connected
to the same network as the replicate.

The replication server connects as a client to the GP
and passes all changes to it, where a “change” takes
the form of an SQL statement. For each row in the
master that changes, the replication server emits one
of the following SQL statements:

• insert: indicates that a new row has been
added to a specific replicated table in the master.

• delete: indicates that a specific row has been
removed from a specific table in the master.

• update: indicates that a specific row in a
replicated table has changed.

Each SQL statement carries additional information to
completely specify the change. For example, an
insert statement includes the name of the replicated
table, the names of all the columns, and the value
associated with each column.

It should be noted that the replication process is a near
real-time duplication of changes to the master. There
is no filtering or consolidation of redundant changes at
any step of the process. Suppose, for example, that a
single transaction adds a row to a replicated table
(insert), changes some values in that row
(update), and then removes the row (delete).
There is no net change to the master database. Even
so, the replication process would faithfully reproduce
this same sequence of SQL in the replicate database.

The replication server itself is a COTS product of
Sybase Inc., which means that IGOR must live with
the benefits and liabilities associated with COTS.
Among the benefits is the fact that the replication
server is a highly asynchronous operation.

• Changes move to the LTM only after the
underlying database transaction has passed a
commit point; the master’s throughput is not
seriously impacted by the replication process.

• The LTM uses either the transaction log (Sybase
master) or trigger-maintained change-description
tables (Oracle and other masters); while the LTM
is processing a transaction, the update software
running on the master is not blocked by the
LTM’s activities, nor are there any particular
requirements levied on the master’s maintenance
software to support replication.

• The replication server accepts a change from an
LTM by placing it into a disk-based “stable
queue”. Once the replication queues a change, the
LTM is free to remove it from the master’s
tables or logs; barring a catastrophic disk failure,
the replication server guarantees to deliver each
queued change eventually.

• The replication server delivers changes to a
replicate at the speed of the replicate, not the
speed of the master. This is particularly

important for IGOR, which is often limited by
the speed of the serial line. Of course, the
average change rate in the master cannot exceed
the capabilities of IGOR; otherwise the
replication server’s queues will eventually fill.

As indicated by the preceding discussion, IGOR is the
replicate database as far as the replication server is
concerned. That is, the replication server logs into
IGOR, passes SQL to IGOR, and gets success and
error status returns, just as if IGOR were a Sybase
SQL Server managing the replicated database directly.

From IGOR’s perspective, of course, the situation is
quite different. When it receives an SQL statement
from the replication server, IGOR performs the
following checks on it.

1. IGOR completely parses the statement. A
statement that IGOR does not recognize as a
proper insert, delete, or update generates
an immediate error back to the replication server
with nothing passed from the GP to the RSP.

2. IGOR verifies that name of the table appears in
the statement and that the table is one IGOR
expects to be replicated. If the table name is
missing or incorrect, IGOR generates an error to
the replication server and again passes nothing.

3. IGOR verifies that the statement names all
columns and that each column is one IGOR
expects. If the statement contains an unexpected
column name or “anonymous” data (values not
explicitly connected to a named column), IGOR
generates an error back to the replication server
without passing the SQL to the RSP.

4. For an update or delete statement, IGOR
verifies that the where clause specifies a value
for each primary key and that only primary-key
columns appear in the where clause. If a key is
missing or if the where clause contains an
unexpected column, IGOR generates an
immediate error back to the replication server
without passing the SQL to the RSP.

5. For each columns with a value constraint
(discussed subsequently), IGOR verifies that the
value mentioned for that column is acceptable. If
a column’s value is bad, IGOR generates an
immediate error to the replication server and
passes nothing to the RSP.

6. If the table is subject to multi-table filtering,
then IGOR runs the appropriate SQL and checks
the return value. The need for multi-table filtering
is discussed later in this section. If the change
fails a multi-table filter, IGOR sends a “success”
status to the replication server without passing
the SQL to the RSP.

7. If the table is subject to full verification and the
change is an insert or update, IGOR
verifies that the row in question actually exists in
the master database. If the row does not exist,
IGOR sends a “success” status to the replication
server without passing the SQL to the RSP.

If and only if the statement passes all of these checks,
IGOR rebuilds the SQL from the representation
generated by check #1 and passes the reconstituted
statement to the RSP, which applies it to the
replicate and passes a pass/fail status back. The GP
sends the status to the replication server.

It should be noted that one of the reasons IGOR can
reliably validate the statements passed from the
replication server is that the server generates
predictably-formatted SQL statements within a small
subset of full SQL. For example, the server never
generates a select statement, which is one of the
more complex SQL statements to parse. Furthermore,
the replication server’s internal workings guarantee
that each SQL statement describes a change to
precisely one row of the master database. This is why
check #4 above makes sense; each change must pick
exactly one row by specifying a value for each
primary-key column.

The checks that IGOR makes on each SQL statement
can be divided into syntactic checks (#1–#4) and
content checks (#5–#7). The syntactic checks verify
that the statement is well-formed and mentions only
the expected database, rows, and columns; these will
be discussed no further here.

The value check (#5) ensures that the values in
specified columns are in accordance with the security
policy. IGOR allows the security policy to specify at
most one wild-card expression (one UNIX regular
expression) for each column; IGOR passes only
values that match the expression. IGOR applies this
check to the values clause of each insert
statement to the set clause (not the where clause)
of each update. For example, the security policy for
IGOR’s initial accreditation specified the following
two restrictions:

• The value for column X in table T must be M or
F. The associated regular expression is ‘[MF]’
(the quotes are part of the expression).

• The value for column Y in table T must start
with either M or N. The regular expression is
‘[MN].* (the quote is part of the expression).

Note that within the scope of check #5 IGOR
examines a column only if it has a declared, specific
UNIX regular expression. In particular, IGOR makes
no attempt to do a generic “dirty value search”
through all the columns being passed from the GP to
the RSP; IGOR limits its checking to those columns
constrained per the security policy.

Multi-table filtering (check #6) requires a bit more
motivation. Consider, for example, a hypothetical
high-side master database of aircraft locations
(ac_db), and suppose that a low-side replicate needs
to have only aircraft produced by a specific list of
countries (A, B, C) passed to it. A typical database
design for the master would put all the fixed
information about aircraft (including the producing
country p_ctry) in one table (ac) and the current
location of the aircraft in another (loc); a key, such
as a randomly-generated aircraft identifier (ac_id),
indicates which rows in the location table are
associated with which row in the aircraft table.

Now consider IGOR’s dilemma when it is handed a
change from loc. The security policy says that only
aircraft produced by certain countries can be passed to
the replicate, but a row from loc does not contain
p_ctry. The only way that IGOR can decide
whether or not to pass the change to the replicate is to
consult ac, back in ac_db. The term “multi-table
filtering” denotes that fact that IGOR needs
information from other table(s) to determine the
suitability of a particular row for the replicate.

In some cases it is possible to avoid the need for
multi-table filtering by changing the database design.
In the example above, for instance, the need for multi-
table filtering disappears if we simply add p_ctry to
loc. Database redesign is not always possible:

• Placing redundant data in tables is generally
viewed as bad technical design and is often
resisted by system analysts.

• Changing the structure of an existing production
database and its maintenance software can be a
long and expensive (thus undesirable) process.

When IGOR was being designed, it seemed prudent to
implement multi-table filtering. There is a cost
associated with multi-table filtering: for each change
from a table subject to multi-table filtering, IGOR
must validate the change by issuing a select
statement back to the master database and checking
the return value. This increases the transaction load on
the master and may nearly double it if the table has a
high rate of change.

It turns out that “multi-table” filtering can also be
used to implement complex checks that cannot be
handled by IGOR’s simple column-by-column regular
expressions. Suppose (to continue the hypothetical
aircraft example) that IGOR is supposed to pass
fighter aircraft produced in A, B, or C and transport
aircraft produced in X, Y, and Z. The replication server
can perform this sort of filtering (from a technical
perspective, this constraint is an “or” of two “and”ed
conditions), but IGOR cannot use its value checks to
verify the replication server’s filtering; IGOR’s value-
checking implementation does not support this sort of
cross-column constraint. However, a “multi-table”
filter that references only the ac table can be
constructed so that IGOR will enforce this constraint.
Again, however, the multi-table filter carries the
penalty of a higher transaction load on the master.

Full validation (check #7) tells IGOR to ensure that
each passed row actually exists in the master database.
This check is very expensive in terms of the increased
transaction load on the master and is not currently
planned for use at ONI. It would be appropriate only
when the master database is extremely sensitive and/or
there appears to be a need for additional protection
against uncontrolled, “rogue” programs attempting to
use IGOR’s facilities.

 3. IGOR’s Installation

The first requirement for an IGOR installation is a
written security policy that specifies precisely what
information is allowed to flow from the GP to the
RSP and that is approved by (1) the owners of the
information in the master database and (2) the
appropriate security authorities. In technical terms,
the security policy must be specific enough to specify
a view of each replicated table. IGOR’s basic job is to
ensure that only the allowed view of each replicated
table passes from the GP to the RSP. Some of the
considerations associated with an IGOR installation
appear in the subsequent sections.

 3. 1. Configuration Control

IGOR performs no queuing or other storage of SQL
statements or database contents. All queuing occurs in
the replication server; IGOR is a pass-through
operation only. Thus except for deliberate
maintenance activities (see Section 3.3 below), IGOR
expects the content and location of most files to be
static. To protect the configuration, the following
features exist on both IGOR hosts.

1. IGOR runs with the keyboard disconnected and
with no unnecessary peripherals (such as a
CDROM drive) connected. This makes it more
difficult to access the hardware console to perform
a single-user boot.

2. After IGOR is installed, the superuser root is
locked out. There is no way to gain interactive
superuser status on an IGOR host; special IGOR
setuid root applications provide limited root
access to the UNIX logins on an IGOR host.

3. Most standard UNIX demons are not started. NFS
and sendmail, for example, do not run. The
only background process spawned by the inetd
process is telnet; ftp, finger, and other
such processes are not available.

4. Each time it starts, IGOR computes a file
signature for critical configuration files and
directories and compares the computed signature
with a stored signature. If there is a mismatch,
IGOR refuses to run.

Together, these features mean that it is difficult to
change IGOR’s configuration, and if an unexpected
change does occur, IGOR shuts down the SQL
transfer process. There is a back door to the IGOR
host: a boot from a CDROM or other alternative
media will allow an administrator to achieve single-
user status and to unlock the root password so that
interactive root access is possible. The absence of
the keyboard and CDROM drive on the IGOR host
during normal operation means that an alternative-
device boot is a relatively complex and public
process. Thus only a maintainer with proper
authorization is likely to have access to the IGOR
hardware for sufficient time to unlock root.

 3. 2. Access Control

As discussed in subsequent sections, IGOR includes
two distinct access-control concepts: access via UNIX
mechanisms and access via IGOR itself.

 3. 2. 1. UNIX Access Control

Access to an IGOR host via UNIX mechanisms is
limited by the following considerations.

• As mentioned previously, root is locked out.
There is no way to achieve superuser status
without an alternative-media boo.

• There are only two authorized userids on an
IGOR host, conventionally called igoradm and
igorisso. These userids have well-defined
roles, as discussed in Section 3.3. All other
userids in the password file are locked out at
installation time.

• With most standard demons disabled, the only
way one can access an IGOR host via UNIX is
via telnet through the network.

Since root is locked out, there is no mechanism by
which anyone can define a new userid. IGOR does
include a setuid root module that allows a manager
to clone a new administrator or ISSO, as discussed in
Section 3.3. However, from a UNIX perspective a
clone is identical to either igoradm or igorisso
rather than being a separate and independent user.

 3. 2. 2. IGOR Access Control

IGOR’s GP is server software to which the replication
server connects as a client. The GP has its own set of
authorized userids and passwords, independent of the
UNIX password file. IGOR recognizes two general
classes of userids:

• An “incoming” userid is one that the replication
server or other client uses to connect to IGOR.

• An outgoing userid is one that IGOR uses to
connect to an external server. For example,
IGOR needs an outgoing userid to connect to the
replicate database and update it.

The passwords for these userids appear in IGOR’s
configuration files as encrypted values. For incoming
userids, IGOR uses the same concept as UNIX to

store passwords: the password field contains a value
for which the clear-text password is the decryption
key. Until an external user supplies the password to
IGOR, the GP does not have the information it needs
to decrypt the password field.

For the password for an outgoing userid, IGOR uses
the fact that each incoming userid is associated at
accreditation time with a single replicate database and
set of verifications checks and hence with a fixed set
of outgoing userids. IGOR stores the passwords for
outgoing userids in encrypted format, using the clear-
text incoming password as the decryption key. Thus
IGOR needs the incoming password not only to
validate access by a specific incoming userid but also
to decrypt the necessary outgoing passwords.

Since IGOR uses the COTS OpenServer library from
Sybase and expects connections from Sybase’s
replication server, any additional access control checks
that IGOR might implement are constrained by the
features provided by these two products. In particular,
IGOR cannot reliably determine the host from which
a connection is coming (the OpenServer does not
provide this information) and cannot use any
authentication scheme (such as a challenge-response
sequence) beyond a simple password check (the
replication server does not support any other scheme).
This means that there is at least a theoretical
possibility that an agent other than the replication
server will attempt to connect to IGOR using the
replication server’s userid and password. IGOR
implements the following obstacles to such an attack:

• The attack would have to come from the GP-
side network. A user on the RSP network has no
access whatsoever to the GP; even if the RSP is
totally compromised the serial line between the
GP and RSP uses a customized, IGOR-only
protocol that provides no access to the GP’s
TCP/IP network.

• IGOR allows only one active connection for
each incoming userid, and the replication server
is generally connected to IGOR at all times.
This limits IGOR’s vulnerability window.

• If an attempt is made to open a second
connection with an in-use userid, IGOR refuses
the connection, shuts down the existing
connection, and disables the userid. IGOR
refuses all subsequent connections under that
userid until the IGOR code restarts, either as a

result of a reboot of the host or an administrative
shutdown command to IGOR itself.

• The passwords associated with incoming and
outgoing userids expire at an interval defined in
IGOR’s static configuration file, which is fixed
at accreditation. This limits the length of time
that an appropriated password will be valid.

• IGOR can be configured to verify that each row
passed to the RSP is in fact in the master
database. IGOR makes this check in addition to
value checks and multi-table filtering. This
option is very expensive in terms of the
transaction load imposed on the master database,
however, and is not currently used at ONI.

 3. 3. Maintenance

In general, IGOR maintenance follows a two-person
rule: igoradm proposes and igorisso validates.
Specific maintenance concepts include:

 Database configuration : IGOR allows table names,
column names, allowed values, and other parameters
for SQL validation to change as the master database
and security policy evolve. IGOR allows igoradm
to propose a complete replacement for the database
configuration file that describes the allowed SQL.
igorisso must approve the replacement file
(without change) before IGOR will actually use it.
IGOR allows tables, columns, and so on, to change
but does not allow a new database or database server
to be added as either a master or replicate; server
names appear in the static configuration file which is
fixed at accreditation.

 User configuration : IGOR provides a special
application that igoradm and igorisso use to
manage IGOR’s incoming and outgoing userids.
igoradm can add and remove entries from the user
configuration file; igorisso can initialize and
change passwords in existing entries. Note that a new
userid cannot be employed until igoradm makes an
entry in the configuration file and igorisso
initializes the password.

 Clone UNIX users : IGOR expects that there may be
multiple individuals that can play either the
administrative or ISSO roles and thus need UNIX
passwords on an IGOR host. To help manage the
UNIX passwords, IGOR provides a module that can
clone either igoradm or igorisso. A clone for

igorisso (for example) has a separate entry in the
UNIX password file but runs under the same numeric
userid as igorisso. A clone is simply an
alternative password and is not an independent userid.
igoradm (or any of its clones) can create a new
clone; the clone is not usable until igorisso (or
any of its clones) assigns an initial password.
igoradm (or any of its closes) can remove a clone.

 3. 4. Alerting and Logging

IGOR was designed to run without a human operator
and without human intervention most of the time. To
keep its managers informed of various internal
conditions, IGOR uses the UNIX mail system to send
alerts to addresses outside of the IGOR hosts;
although sendmail is disabled for incoming mail,
IGOR can still send mail to external hosts. IGOR
sends mail to an arbitrary number of addresses
(specified in the database configuration file) whenever
it starts up, whenever a serious error prevents IGOR
from running, and whenever other “interesting”
situations occur.

IGOR maintains a log of important events (UNIX
login, IGOR login, and the like) and (on the GP) a
complete list of all SQL statements sent to the RSP.
A timed batch job (cron job) archives these logs, as
well as other UNIX-maintained log files, to tape. The
archive script Ssalvage checks for various error
conditions during the archive run and alerts managers
(via mail) when a tape needs to be replaced, the
archive run fails, or other error conditions. Other than
periodic replacement of a full archive tape, IGOR runs
completely automatically, with no operator
intervention required.

 4. Status and Future Work

IGOR currently runs on two Sun Sparc IPX platforms
running standard Solaris 2.4. Due to hardware
limitations on the IPXs, IGOR’s serial I/O is limited
to 9600 baud. Two tables are being replicated from an
ONI production database, one with approximately 20
attributes and the other with approximately 70. IGOR
is handling about 15,000 inserts and 20,000 deletes
per day, and could possibly handle as much as twice
that load before the serial port bottleneck becomes
critical. The CPU load on the system is low
(generally under 20%); IGOR is definitely an I/O-
bound process.

IGOR is built with Sybase’s OpenServer product. It
is multi-threaded; it can handle multiple connections
and allows multiple tables to be replicated through a
single connection. A design limit constrains each
connection to involve a single source database and a
single replicate database; the IGOR userid employed
for the connection uniquely determines both the
master and replicate databases, per the IGOR
configuration files. Note that each IGOR installation
is a guard between two specific security
environments, one associated with the GP’s network
and the other associated with the RSP’s network.
Each distinct pair of security environments requires a
separate IGOR installation.

During the week of 11-March-1996 this IGOR
installation underwent accreditation tests by a team
consisting of representatives from ONI-5 and DIA.
The test uncovered no Category-I findings for IGOR
itself (the only Cat-I finding involved accreditation for
the master database). Of the two Category-II findings,
one involved a minor code change and the other called
for changes to IGOR documentation. There were
several lower-category findings as well. All these
findings have been resolved.

As mentioned in Section 1, the accredited IGOR
installation operates in a high-to-low mode.
Additional high-to-low IGOR installations would first
require a written and approved security policy. The
IGOR configuration files would next be constructed in
accordance with this policy. The site would need to
create installation-specific documentation, as an annex
to the existing IGOR documentation, that describes
the concept of operations and IGOR operational
policies for the specific installation as well as a few
security tests that depend on the structure of the
master database. Finally, a security review or
accreditation would be necessary to verify proper
installation of the IGOR code on the new hosts and
proper implementation of the security policy in the
IGOR configuration files.

It is probable that low-to-high accreditation will
require minor changes in the IGOR code. As implied
by the other discussion in this paper, all of IGOR’s
validation activities currently take place on the GP. In
the case of low-to-high replication, the GP roll is
played by the IGOR host on the low network. Even
though the GP itself is under the physical control of
the high-side environment, there is at least a
theoretical possibility that the GP could be
compromised and all its protections removed. The
following suggestions for IGOR changes to deal with

low-to-high issues are proposals by the author; they
are not sanctioned by ONI, nor have they been
seriously discussed with any accreditation authority.

One protection that is clearly needed for low-to-high
operation is a limit on the databases that the RSP can
access. IGOR currently stores all access information
on the GP side; the GP passes the name of the
database and the userid/password to the RSP through
the serial line. This approach is satisfactory for high-
to-low operation; for low-to-high operation, the RSP
should have its own table of allowed databases. This
change is a fairly simple one in the RSP code. With
the change in place, the RSP ignores the database
identification passed from the GP. Instead, it uses the
userid from the GP to look up the database and the
real userid; the password from the GP is the
decryption key for the real password. This approach
not only limits the databases to which the RSP can
connect, but also shields the real database name,
userid, and password from the low-side IGOR
maintainers. In addition, the DBMS privileges
associated with the RSP’s database userid can ensure
that only the proper subset of the replicate database is
visible to the RSP.

The RSP should also implement some SQL checks
for low-to-high operation. For example, the RSP
should verify that the SQL coming from the GP
always has certain primary key fields with specific
values; this check would ensure that data coming from
the low side is properly marked and cannot be
confused with similar data that originates on the high
side. These checks are a fairly simple extension of the
existing SQL parsing and checking capability already
used on the GP side.

It was noted in Section 1 that the two IGOR hosts
can theoretically play both the GP and RSP roles.
That is, the situation might arise in which databases
on the low-side databases need information from the
high side and also high-side databases need
information from the low side. The only code module
in common between the low-to-high and high-to-low
information flow in this situation is the serial-line
handler, which has very limited functionality and thus
can be verified to work properly without a great deal
of work. At this point it seems that a dual-mode
operation is feasible from a security perspective,
although there are no plans to actually accredit any
IGOR installation for this sort of operation.

Finally, the reader will note that IGOR was built on
standard Solaris. This situation exists mainly due to

the lack of any approved product that would support
Sybase’s OpenServer and OpenClient libraries as well
as Oracle’s OCI library, but this situation will of
course change over time. In a full multi-level
environment with an approved, trusted operating
system, IGOR’s activities become that of a set of
modules allowed to perform a specialized
reclassification operation (write-down for high-to-low
operation, write-up for low-to-high operation). In this
environment, most of the SQL checks that IGOR
currently performs would still be required. That is,
IGOR would still have to verify that the SQL
statements are appropriate for the RSP’s security
environment unless there are radical changes in the
trusted versions of Oracle and Sybase and also in the
replication server. Without such changes, most of the
existing considerations, including multi-table
filtering, would still apply. Although parts of IGOR’s
code would require modification for the new
environment, much of it should port with little or no
conceptual change.

